Analysis of 401 NEPharm consultations requested for drug dose adjustment in kidney patients

Frieder Keller

with support from
Franz Maximilian Rasche, Benjamin Boesler, Belal Awad, Ruth Renz and Tim Seewoester

Nephrology

Disclosures
Sponsored by Novartis and Alexion

Which drugs make the biggest problems?

<table>
<thead>
<tr>
<th>Drug Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiinfectiva</td>
<td>46%</td>
</tr>
<tr>
<td>Zydostatika</td>
<td>25%</td>
</tr>
<tr>
<td>Antihypertensiva</td>
<td>12%</td>
</tr>
<tr>
<td>Anidriabekta</td>
<td>10%</td>
</tr>
<tr>
<td>Andere</td>
<td>7%</td>
</tr>
</tbody>
</table>

NEPharm inquiries 2002 – 2012

- **Cases**: N = 401
- **Mean age of patients**: 57 +/- 17 years
- **e-mail**: 92%
 - **fax**: 6%
 - **post mail**: 2%
- **On dialysis or dialysis started**: 85% 10%
- **CKD**: 15%
 - **mean GFR**: 45 +/- 19 ml/min
NEPharm Drug Consultations

Dose adjustment

Zytostatika bei Dialyse

YES =>

- Actinomycin D
- Arsentrioxid
- Bleomycin
- Capecitabin
- Carboplatin
- Carmustin
- Cisplatin
- Cladribin
- Clofarabin
- Cyclophosphamid
- Cytarabin
- Chlorambucil
- Dacarbazine
- Daunorubicin
- Doxorubicin
- Epirubicin
- Etoposid
- Fludarabin
- Gemcitabin (dFdU-M)
- Hydroxyurea
- Idarubicin
- Ifosfamid
- Irinotecan
- Lenalidomide
- Melphalan
- Mitomycin
- Methotrexat
- Oxaliplatin
- Pemetrexed
- Procarbazine
- Topotecan

NO =>

- Anastrozol
- all trans Retinol
- Anagrelid
- Asparaginase
- 5-Azazitidin
- Azathioprin
- Bevacizumab
- Bortezomib
- Busulfan
- Cetuximab
- Docetaxel
- Doxorubicin PEG
- Epirubicin (fren 7%)
- Erlotinib
- 5-Fluorouracil
- Gefinitib
- Gentuzumab
- Imatinib
- Leuprolrelin
- Mechloreotamin
- Megestrol
- 6-Mercaptopurin
- Mitoxantron
- Nilotimib (?)
- Paclitaxel
- Procarbazine
- Rituximab
- Sorafenib
- Sunitinib
- Thalidomide
- Tamoxifen
- Terezol
- Topotecan
- Trastuzumab
- Vinblastin
- Vincriustin
- Vorexibin

**Anti-cancer drugs and **\textbf{KIDNEY}

- **Platinderivate:** *Cisplatin* / *Carboplatin* / *Oxaliplatin*
- **Antimetabolite:** 5-FU / Gemcitabin / *Pemetrexet* / 6-Mercaptopurin
 - Capecitabin / *Methotrexat* / Azathioprin
- **Vinca-Alkaloide:** Vinorelbin / Vincristin / Vinblastin
- **Taxane:** Docetaxel / Paclitaxel
- **Anthrazykline:** Doxorubicin / *Daunorubicin* / Epirubicin / *Idarubicin*
- **Antikörper:** Bevacizumab / Cetuximab
- **TK-Inh:** Erlotinib / Sorafenib / Sunitinib
- **Alkylantien:** Cyclophosphamid / *Ifosfamid* / Treosulfan
 - *Dacarbazin* / Procarbazin
- **Antibiotika:** *Bleomycin* / *Mitomycin*
- **Topoisomerase-Inh:** *Etoposid* / Irinotecan / Topotecan

NEPharm database

PubMed search
- Identification of papers (manually)
- Data extraction
- Data input
- Control of errors

NEPharm (Ulm)
- Pharmacokinetic Datenbase \(T_{1/2}, Cl, Vd\)
- Form: Access
- Number: >90’000 Parameter values for >30’00 Drugs from >10’000 papers

Keller F, Frankewitsch T, Zellner D, Simon S, Czock D, Giehl M.
\textit{Standardized structure and modular design of a pharmacokinetic database.}
Dettli Dose Adjustment \(AUC = \text{const.} \).

Referee’s comments:
Referee: I

Comments to the Author
From academic perspective, this manuscript is fairly good but in real life (clinical setting) it has no practical application. In a clinical setting, a treating physician has neither time nor the ability to calculate the duration of effect as proposed by the authors. The physicians will ultimately adjust the dose based on a patient’s response and may increase or decrease the dose accordingly.

I disagree with the authors that “the time of effect duration is a proportional function of the elimination half-life”. In reality, pharmacokinetic half-life can be entirely different than the pharmacological half-life. A drug can have a very short half-life but its pharmacological effect can be much longer than the elimination half-life. For example, selegiline (an adjunct to levodopa) has a half-life about 2 hours but this drug is given every 24 hours. Similarly, diazepam has a long half-life (approximately 40 hours) but is given 2 to 3 times a day for the treatment of anxiety. This phenomenon will be true for a good majority of drugs.

In disease states such as renal or hepatic impairment, the dose adjustment is made based on the AUC not on the elimination half-life. The regular practice is to reduce the dose based on increase in the AUC but keep the dosage interval similar to healthy subjects.

\[
Cl = \frac{D}{AUC}
\]

for \(\rightarrow \ Tau = \text{const.} \rightarrow D = D_{\text{norm}} \cdot \frac{Cl}{Cl_{\text{norm}}} \)

= Dettli rule 1

General Kunin approach \(C_{\text{peak}} = \text{const.} \).

Kunin CM.
A guide to use of antibiotics in patients with renal disease.

\[
D = D_{\text{start}} \left[1 - \exp \left(-0.693 \cdot \frac{\ Tau}{T_{1/2}} \right) \right]
\]

\[
Tau = \frac{T_{1/2}}{0.693} \cdot \ln \left(\frac{C_{\text{peak}}}{C_{\text{trough}}} \right)
\]

for \(\rightarrow C_{\text{trough}} = \text{const.} \rightarrow Tau \geq T_{1/2} \)

= Dettli rule 2

for \(\rightarrow C_{\text{trough}} = \frac{1}{2} \cdot C_{\text{peak}} \rightarrow Tau = T_{1/2} \)

= Kunin rule
Clinical course of haemodialysis patients with malignancies and dose-adjusted chemotherapy.

Table 1. Administered doses compared with the dose proposals calculated by the dose adjustment rules of Dettli and Giusti/Hayton

<table>
<thead>
<tr>
<th>Drug</th>
<th>B_{admin}</th>
<th>B_{norm}</th>
<th>B_{Dettli}</th>
<th>D_{Giusti}</th>
<th>$T_1/2\text{norm}$ (h)</th>
<th>$T_1/2\text{Dettli}$ (h)</th>
<th>f_{admin} (%)</th>
<th>$D_{\text{admin}}/D_{\text{Dettli}}$ (%)</th>
<th>$D_{\text{admin}}/D_{\text{Giusti}}$ (%)</th>
<th>$D_{\text{admin}}/D_{\text{norm}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmustine</td>
<td>60°</td>
<td>60°</td>
<td>6°</td>
<td>5.9°</td>
<td>1.5</td>
<td>1.6</td>
<td>1.4</td>
<td>1.0</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>6°</td>
<td>6°</td>
<td>6°</td>
<td>8.9°</td>
<td>1.6</td>
<td>1.6d</td>
<td>1.0</td>
<td>1.0</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>9°</td>
<td>9°</td>
<td>9°</td>
<td>8.9°</td>
<td>1.6</td>
<td>1.6d</td>
<td>1.0</td>
<td>1.0</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>48°</td>
<td>60°</td>
<td>31.7°</td>
<td>31.8°</td>
<td>137</td>
<td>239</td>
<td>171</td>
<td>145</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Cyclophosphamide 11.25°</td>
<td>15°</td>
<td>10.9°</td>
<td>12.8°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>106</td>
<td>87</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Cyclophosphamide 13°</td>
<td>13°</td>
<td>10.9°</td>
<td>12.8°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>142</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide 600°</td>
<td>600°</td>
<td>423.3°</td>
<td>512.9°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>142</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide 650°</td>
<td>650°</td>
<td>458.6°</td>
<td>555.6°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>142</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide 1000°</td>
<td>1000°</td>
<td>703.5°</td>
<td>854.8°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>142</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide 2000°</td>
<td>2000°</td>
<td>1709.6°</td>
<td>1709.6°</td>
<td>6.0</td>
<td>8.5</td>
<td>14.5</td>
<td>142</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cytarabine</td>
<td>20°</td>
<td>200°</td>
<td>177.3°</td>
<td>176.0°</td>
<td>2.0</td>
<td>2.2</td>
<td>2.2</td>
<td>120</td>
<td>113</td>
<td>144</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>45°</td>
<td>60°</td>
<td>48.5°</td>
<td>51.6°</td>
<td>16.2</td>
<td>20.1</td>
<td>14.0</td>
<td>93</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>8°</td>
<td>46°</td>
<td>7°</td>
<td>9°</td>
<td>17.5</td>
<td>20.8</td>
<td>17.5</td>
<td>12.7</td>
<td>89</td>
<td>86</td>
</tr>
<tr>
<td>Etosaxel</td>
<td>3°</td>
<td>90°</td>
<td>87°</td>
<td>86.8°</td>
<td>5.1</td>
<td>5.3</td>
<td>3.8</td>
<td>40</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>5°</td>
<td>50°</td>
<td>40°</td>
<td>43.7°</td>
<td>17.5</td>
<td>20.8</td>
<td>17.5</td>
<td>12.7</td>
<td>89</td>
<td>86</td>
</tr>
<tr>
<td>Etoposide</td>
<td>25°</td>
<td>25°</td>
<td>158.1°</td>
<td>158.0°</td>
<td>5.1</td>
<td>8.1</td>
<td>38.6</td>
<td>158</td>
<td>158</td>
<td>100</td>
</tr>
<tr>
<td>S-Fluorouracil</td>
<td>423°</td>
<td>423°</td>
<td>311.7°</td>
<td>389.8°</td>
<td>0.2</td>
<td>0.3</td>
<td>8.3</td>
<td>136</td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td>S-Fluorouracil</td>
<td>480°</td>
<td>480°</td>
<td>352.0°</td>
<td>440.2°</td>
<td>0.2</td>
<td>0.3</td>
<td>8.3</td>
<td>136</td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td>S-Fluorouracil</td>
<td>600°</td>
<td>600°</td>
<td>440.9°</td>
<td>550.3°</td>
<td>0.2</td>
<td>0.3</td>
<td>8.3</td>
<td>136</td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td>S-Fluorouracil</td>
<td>650°</td>
<td>650°</td>
<td>440.9°</td>
<td>550.3°</td>
<td>0.2</td>
<td>0.3</td>
<td>8.3</td>
<td>136</td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td>S-Fluorouracil</td>
<td>2600°</td>
<td>2600°</td>
<td>1910°</td>
<td>2380°</td>
<td>0.2</td>
<td>0.3</td>
<td>8.3</td>
<td>136</td>
<td>109</td>
<td>100</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>5°</td>
<td>5°</td>
<td>9.5°</td>
<td>9.4°</td>
<td>24.3</td>
<td>25.7°</td>
<td>6.5</td>
<td>63</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>Melphalan</td>
<td>30°</td>
<td>30°</td>
<td>19.0°</td>
<td>19.0°</td>
<td>1.1</td>
<td>2.9</td>
<td>36.7</td>
<td>158</td>
<td>158</td>
<td>100</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>8°</td>
<td>10°</td>
<td>9.5°</td>
<td>9.4°</td>
<td>40.7</td>
<td>43.3°</td>
<td>6.0</td>
<td>84</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Procarbazine</td>
<td>100°</td>
<td>100°</td>
<td>100°</td>
<td>100°</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Vincristine</td>
<td>0.4°</td>
<td>0.4°</td>
<td>0.4°</td>
<td>0.4°</td>
<td>2.7</td>
<td>3.2</td>
<td>12.0</td>
<td>111</td>
<td>114</td>
<td>100</td>
</tr>
<tr>
<td>Vincristine</td>
<td>0.4°</td>
<td>0.4°</td>
<td>0.4°</td>
<td>0.4°</td>
<td>2.7</td>
<td>3.2</td>
<td>12.0</td>
<td>111</td>
<td>114</td>
<td>100</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>20°</td>
<td>30°</td>
<td>17°</td>
<td>24.9°</td>
<td>36.3</td>
<td>44.2°</td>
<td>17.9</td>
<td>119</td>
<td>108</td>
<td>91 ± 16</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>119 ± 30</td>
<td>108 ± 26</td>
<td>91 ± 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Dosing N = 401

- **Initiate or intensify hemodialysis**
- **Daily hemodialysis for 4 successive days**

Platin derivatives and kidney dysfunction

Proposal:
- Standard dose
- 2 – 12 h later Hemodialysis
- Daily for 4 days HD

Carboplatin in non-small cell lung carcinoma N = 41
Ruth Renz, Christian Schumann, Franz Maximilian Rasche
Conclusion

Dose adjustment
The optimum might be chosen
– between Dettli
– and Kunin
Based on pharmacodynamic considerations